302 research outputs found

    Reconstitution of the Neurospora crassa plasma membrane H+-adenosine triphosphatase

    Get PDF
    AbstractThe purified H+-ATPase of the Neurospora crassa plasma membrane has been reconstituted by a gel filtration method into lipidic vesicles using sodium deoxycholate as the detergent. Reconstitution was performed for lipid/ATPase ratios ranging from 1000:1 to 5:1 (ww). Whatever the lipid/ATPase ratio, the ATPase molecules completely associate with the lipid vesicles. The ATPase specific activity is identical for all proteoliposomes regardless of the lipid/ATPase ratio, but the H+ transport decreases at high protein/lipid ratios, suggesting that the proteoliposomes are more leaky to H+ as the amount of protein inserted into the lipidic membrane increases. Analysis of the fragments generated by trypsin proteolysis in the presence and in the absence of MgATP + vanadate indicate that most of the reconstituted ATPase molecules are able to assume the transition state of the enzyme dephosphorylation reaction, and are therefore functional. The orientation (inside-out or rightside-out) of the ATPase molecules in the vesicles is independent of the lipid/ATPase ratio chosen for the reconstitution. For all the lipid/ATPase ratios tested, most of the ATPase molecules (> 99%) expose their cytoplasmic side to the outside of the n.-constituted proteoliposomes. The size of the vesicles increases parallel to the ATPase amount. Although the H+ leakiness of our preparation at low lipid/protein ratios prevents proton pumping measurements, the reconstitution procedure described here has the main advantage on other procedures to allow the obtention of vesicles at high protein-to-lipid ratios, facilitating further structural characterization of the ATPase by biochemical and biophysical techniques. Therefore, the procedure described here could be of general interest in the field of membrane protein study

    A Simple Model for Cell Type Recognition Using 2D-Correlation Analysis of FTIR Images From Breast Cancer Tissue

    Get PDF
    Breast cancer is the second most common cancer after lung cancer. So far, in clinical practice, most cancer parameters originating from histopathology rely on the visualization by a pathologist of microscopic structures observed in stained tissue sections, including immunohistochemistry markers. Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a biochemical fingerprint of a biopsy sample and, together with advanced data analysis techniques, can accurately classify cell types. Yet, one of the challenges when dealing with FTIR imaging is the slow recording of the data. One cm2 tissue section requires several hours of image recording. We show in the present paper that 2D covariance analysis singles out only a few wavenumbers where both variance and covariance are large. Simple models could be built using 4 wavenumbers to identify the 4 main cell types present in breast cancer tissue sections. Decision trees provide particularly simple models to reach discrimination between the 4 cell types. The robustness of these simple decision-tree models were challenged with FTIR spectral data obtained using different recording conditions. One test set was recorded by transflection on tissue sections in the presence of paraffin while the training set was obtained on dewaxed tissue sections by transmission. Furthermore, the test set was collected with a different brand of FTIR microscope and a different pixel size. Despite the different recording conditions, separating extracellular matrix (ECM) from carcinoma spectra was 100% successful, underlying the robustness of this univariate model and the utility of covariance analysis for revealing efficient wavenumbers. We suggest that 2D covariance maps using the full spectral range could be most useful to select the interesting wavenumbers and achieve very fast data acquisition on quantum cascade laser infrared imaging microscopes

    Discrimination of Breast Cancer from Benign Tumours Using Raman Spectroscopy

    Get PDF
    Breast cancer is the most common cancer among women worldwide, with an estimated 1.7 million cases and 522,000 deaths in 2012. Breast cancer is diagnosed by histopathological examination of breast biopsy material but this is subjective and relies on morphological changes in the tissue. Raman spectroscopy uses incident radiation to induce vibrations in the molecules of a sample and the scattered radiation can be used to characterise the sample. This technique is rapid and non-destructive and is sensitive to subtle biochemical changes occurring at the molecular level. This allows spectral variations corresponding to disease onset to be detected. The aim of this work was to use Raman spectroscopy to discriminate between benign lesions (fibrocystic, fibroadenoma, intraductal papilloma) and cancer (invasive ductal carcinoma and lobular carcinoma) using formalin fixed paraffin preserved (FFPP) tissue. Haematoxylin and Eosin stained sections from the patient biopsies were marked by a pathologist. Raman maps were recorded from parallel unstained tissue sections. Immunohistochemical staining for estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2/neu) was performed on a further set of parallel sections. Both benign and cancer cases were positive for ER while only the cancer cases were positive for HER2. Significant spectral differences were observed between the benign and cancer cases and the benign cases could be differentiated from the cancer cases with good sensitivity and specificity. This study has shown the potential of Raman spectroscopy as an aid to histopathological diagnosis of breast cancer, in particular in the discrimination between benign and malignant tumours

    A New Alternative Tool to Analyse Glycosylation in Monoclonal Antibodies Based on Drop-Coating Deposition Raman imaging: A Proof of Concept

    Full text link
    peer reviewedGlycosylation is considered a critical quality attribute of therapeutic proteins as it affects their stability, bioactivity, and safety. Hence, the development of analytical methods able to characterize the composition and structure of glycoproteins is crucial. Existing methods are time consuming, expensive, and require significant sample preparation, which can alter the robustness of the analyses. In this context, we developed a fast, direct, and simple drop-coating deposition Raman imaging (DCDR) method combined with multivariate curve resolution alternating least square (MCR-ALS) to analyze glycosylation in monoclonal antibodies (mAbs). A database of hyperspectral Raman imaging data of glycoproteins was built, and the glycoproteins were characterized by LC-FLR-MS as a reference method to determine the composition in glycans and monosaccharides. The DCDR method was used and allowed the separation of excipient and protein by forming a “coffee ring”. MCR-ALS analysis was performed to visualize the distribution of the compounds in the drop and to extract the pure spectral components. Further, the strategy of SVD-truncation was used to select the number of components to resolve by MCR-ALS. Raman spectra were processed by support vector regression (SVR). SVR models showed good predictive performance in terms of RMSECV, R2CV

    SOMSpec as a general purpose validated self-organising map tool for rapid protein secondary structure prediction from infrared absorbance data

    Get PDF
    A protein’s structure is the key to its function. As protein structure can vary with environment, it is important to be able to determine it over a wide range of concentrations, temperatures, formulation vehicles, and states. Robust reproducible validated methods are required for applications including batch-batch comparisons of biopharmaceutical products. Circular dichroism is widely used for this purpose, but an alternative is required for concentrations above 10 mg/mL or for solutions with chiral buffer components that absorb far UV light. Infrared (IR) protein absorbance spectra of the Amide I region (1,600–1700 cm−1) contain information about secondary structure and require higher concentrations than circular dichroism often with complementary spectral windows. In this paper, we consider a number of approaches to extract structural information from a protein infrared spectrum and determine their reliability for regulatory and research purpose. In particular, we compare direct and second derivative band-fitting with a self-organising map (SOM) approach applied to a number of different reference sets. The self-organising map (SOM) approach proved significantly more accurate than the band-fitting approaches for solution spectra. As there is no validated benchmark method available for infrared structure fitting, SOMSpec was implemented in a leave-one-out validation (LOOV) approach for solid-state transmission and thin-film attenuated total reflectance (ATR) reference sets. We then tested SOMSpec and the thin-film ATR reference set against 68 solution spectra and found the average prediction error for helix (α + 310) and β-sheet was less than 6% for proteins with less than 40% helix. This is quantitatively better than other available approaches. The visual output format of SOMSpec aids identification of poor predictions. We also demonstrated how to convert aqueous ATR spectra to and from transmission spectra for structure fitting. Fourier self-deconvolution did not improve the average structure predictions

    Characterization of the Interactions between Fluoroquinolone Antibiotics and Lipids: a Multitechnique Approach

    Get PDF
    Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research and membrane biophysics. Previous studies showed differences in accumulation and intracellular activity between two fluoroquinolones, ciprofloxacin and moxifloxacin, that may actually result from their differential susceptibility to efflux by the ciprofloxacin transporter. In view of the critical role of lipids for the drug cellular uptake and differences observed for the two closely related fluoroquinolones, we investigated the interactions of these two antibiotics with lipids, using an array of complementary techniques. Moxifloxacin induced, to a greater extent than ciprofloxacin, an erosion of the DPPC domains in the DOPC fluid phase (atomic force microscopy) and a shift of the surface pressure-area isotherms of DOPC/DPPC/fluoroquinolone monolayer toward lower area per molecule (Langmuir studies). These effects are related to a lower propensity of moxifloxacin to be released from lipid to aqueous phase (determined by phase transfer studies and conformational analysis) and a marked decrease of all-trans conformation of acyl-lipid chains of DPPC (determined by ATR-FTIR) without increase of lipid disorder and change in the tilt between the normal and the germanium surface (also determined by ATR-FTIR). All together, differences of ciprofloxacin as compared to moxifloxacin in their interactions with lipids could explain differences in their cellular accumulation and susceptibility to efflux transporters

    Description moléculaire du mécanisme de la cardiotoxicité induite par l'adriamycine

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    FTIR data processing and analysis tools

    No full text
    The information retrieved from FTIR spectra largely depends on both the quality of the original spectra and on the correction and processing methods. This contribution reviews the entire process driving to a fine and reliable interpretation of the data. © 2009 The authors and IOS Press. All rights reserved.SCOPUS: ar.kinfo:eu-repo/semantics/publishe

    ATPase de la membrane plasmique de Neurospora crassa: état oligomérique avant et après reconstitution dans des liposomes et structure secondaire évaluée par une méthode spectroscopique infrarouge originale

    No full text
    Doctorat en SciencesThèse d'agrégationinfo:eu-repo/semantics/nonPublishe
    corecore